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ATTENUATION OF SHOCK WAVES IN ALUMINUM 5401 

TABLE III. Values of experimental parameters for 2024-T351 aluminum. 

Parameters 

Flyer plate velocity (cm/j.lsec) 

Peak stress (Mbar) 

Sound speed, c (cm/~ec)' 

Sound speed, c (cm!l&sec)b 

G (Mbar) 

K (Mbar) 

<1",-<1"1 (Mbar) 

Y.+ YI (Mbar) 

Coordinate of point M, Fig. 2 

Flyer plate thickness (em) 

Low-velocity 
flying plates 

0.125 

0.110 

0.80±0.02 

0.81 

0.54±0.07 

1.27 

0.025 

0.013±0.OO8 

5.5 

0 .32 (nominal) 

High-velocity 
. flying plates 

0 .33 

0.345 

0.93±0.05 

0.59±0.25 

2.28 

0.065 

0.025±0.OO8 

4.5 • 
0.3~ (nominal) 

• Aluminum free·surface velocity vs depth measurements. b lm'l'ersed-foil water-gauge measure me'll. 

Eq. (6)]. From Eq~ (5) the elastic sound speed is or by use of Eq. (12) 

c2=do/ dp= V (K+4G/3) = FV, (12) 

where F is called the lbngitudinal elastic modulus and V 
is the specific volume. Experiments with flyer plates 
give values of both c and V, so that F may be calcu­
lated. The dependence of F on the stress can be de­
termined if experimental data are available at two or 
more stress levels. Replacing K with - V dP / dV there 
results 

G=3(F-K)/4=3(pc2+ VdP/ dV)/4. (13) 

The quantity dP/ dV must first be approximated by 
dO'II/ dV where 0'11 is on the upper, or Hugoniot, curve 
of Fig. 6. Then the variables G, F, and K can b.e 
evaluated by using experimentally related values of 
V and c. 

Equation (10) now becomes 
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0'.-0'1= (Y.+ Y I)(K+!G)/2G, (14) 
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(15) 

where K can be approximated as explained above. It 
was expected that the experiments which give V and c 
for an elastic wave woul~ also give, at least approxi­
mately, values of (0'.-0",), so that the value of (Y. 
+ YI ) could be calculated. Once these values are 
known as, say, functions of the volume, Eq. (3) can be 

. used to construct a tentative hydrostat, so that another · 
approximation can be made for dP/dV, and the process 
of calculating G and (Y.+ YI) can be repeated. Be­
cause the experiments fail to show a definite separation 
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