TABLE III. Values of experimental parameters for 2024-T351 aluminum.

Parameters	Low-velocity flying plates	High-velocity flying plates	· .
Flyer plate velocity ($cm/\mu sec$)	0.125	0.33	
Peak stress (Mbar)	0.110	0.345	
Sound speed, $c \ (cm/\mu sec)^{a}$	0.80 ± 0.02	0.93 ± 0.05	
Sound speed, c (cm/µsec) ^b	0.81		
G (Mbar)	0.54 ± 0.07	0.59 ± 0.25	
K (Mbar)	1.27	2.28	
$\sigma_e - \sigma_f $ (Mbar)	0.025	0.065	
$Y_e + Y_f$ (Mbar)	$0.013 {\pm} 0.008$	0.025 ± 0.008	
Coordinate of point M, Fig. 2	5.5	4.5	
Flyer plate thickness (cm)	0.32 (nominal)	0.32 (nominal)	

^a Aluminum free-surface velocity vs depth measurements.

Eq. (6)]. From Eq. (5) the elastic sound speed is

$$c^2 = d\sigma/d\rho = V(K + 4G/3) = FV,$$
 (12)

where F is called the longitudinal elastic modulus and Vis the specific volume. Experiments with flyer plates give values of both c and \tilde{V} , so that F may be calculated. The dependence of F on the stress can be determined if experimental data are available at two or more stress levels. Replacing K with -VdP/dV there results

$$G = 3(F - K)/4 = 3(\rho c^2 + V dP/dV)/4.$$
 (13)

The quantity dP/dV must first be approximated by $d\sigma_H/dV$ where σ_H is on the upper, or Hugoniot, curve of Fig. 6. Then the variables G, F, and K can be evaluated by using experimentally related values of V and c.

Equation (10) now becomes

$$\sigma_e - \sigma_f = \left(Y_e + Y_f \right) \left(K + \frac{4}{3}G \right) / 2G, \tag{14}$$

ofiles of stress um projectile uminum target hickness 0.322 e velocity 0.125

d with the

n in Fig. 8.

ninum pro-

nite target.

at intervals

parameters

the elasto-

the elastic

essure wave

he particle

ons. Figure

le velocity

eristic code

wo sets of

sults when

used. Ex-

ported ex-

el

ss-strain

Fluid model

0.0 0.0 2.785 0.765 1.66 0.428

or by use of Eq. (12)

^b Immersed-foil water-gauge measurement.

$$Y_e + Y_f = 1.5 [1 - (K/\rho c^2)] (\sigma_e - \sigma_f),$$
 (15)

where K can be approximated as explained above. It was expected that the experiments which give V and cfor an elastic wave would also give, at least approximately, values of $(\sigma_e - \sigma_f)$, so that the value of $(Y_e$ $+Y_f$) could be calculated. Once these values are known as, say, functions of the volume, Eq. (3) can be used to construct a tentative hydrostat, so that another approximation can be made for dP/dV, and the process of calculating G and $(Y_e + Y_f)$ can be repeated. Because the experiments fail to show a definite separation

5401